Mister Exam

Derivative of x+sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      ___
x + \/ x 
x+x\sqrt{x} + x
x + sqrt(x)
Detail solution
  1. Differentiate x+x\sqrt{x} + x term by term:

    1. Apply the power rule: xx goes to 11

    2. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

    The result is: 1+12x1 + \frac{1}{2 \sqrt{x}}


The answer is:

1+12x1 + \frac{1}{2 \sqrt{x}}

The graph
02468-8-6-4-2-1010020
The first derivative [src]
       1   
1 + -------
        ___
    2*\/ x 
1+12x1 + \frac{1}{2 \sqrt{x}}
The second derivative [src]
 -1   
------
   3/2
4*x   
14x32- \frac{1}{4 x^{\frac{3}{2}}}
The third derivative [src]
  3   
------
   5/2
8*x   
38x52\frac{3}{8 x^{\frac{5}{2}}}
The graph
Derivative of x+sqrt(x)