$$\lim_{x \to -\infty}\left(x y^{2}\right) = - \infty \operatorname{sign}{\left(y^{2} \right)}$$ $$\lim_{x \to \infty}\left(x y^{2}\right) = \infty \operatorname{sign}{\left(y^{2} \right)}$$ More at x→oo $$\lim_{x \to 0^-}\left(x y^{2}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x y^{2}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(x y^{2}\right) = y^{2}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x y^{2}\right) = y^{2}$$ More at x→1 from the right