Mister Exam

Other calculators:


x*sin(x)^2

Limit of the function x*sin(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2   \
 lim \x*sin (x)/
x->oo           
limx(xsin2(x))\lim_{x \to \infty}\left(x \sin^{2}{\left(x \right)}\right)
Limit(x*sin(x)^2, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Other limits x→0, -oo, +oo, 1
limx(xsin2(x))=sign(0,1)\lim_{x \to \infty}\left(x \sin^{2}{\left(x \right)}\right) = \infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}
limx0(xsin2(x))=0\lim_{x \to 0^-}\left(x \sin^{2}{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(xsin2(x))=0\lim_{x \to 0^+}\left(x \sin^{2}{\left(x \right)}\right) = 0
More at x→0 from the right
limx1(xsin2(x))=sin2(1)\lim_{x \to 1^-}\left(x \sin^{2}{\left(x \right)}\right) = \sin^{2}{\left(1 \right)}
More at x→1 from the left
limx1+(xsin2(x))=sin2(1)\lim_{x \to 1^+}\left(x \sin^{2}{\left(x \right)}\right) = \sin^{2}{\left(1 \right)}
More at x→1 from the right
limx(xsin2(x))=sign(0,1)\lim_{x \to -\infty}\left(x \sin^{2}{\left(x \right)}\right) = - \infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}
More at x→-oo
Rapid solution [src]
oo*sign(<0, 1>)
sign(0,1)\infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}
The graph
Limit of the function x*sin(x)^2