Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of sin(5*x)/(2*x)
Limit of tan(8*x)/sin(5*x)
Limit of csc(x)
Limit of x*sin(x)^2
Graphing y =
:
x*sin(x)^2
Integral of d{x}
:
x*sin(x)^2
Identical expressions
x*sin(x)^ two
x multiply by sinus of (x) squared
x multiply by sinus of (x) to the power of two
x*sin(x)2
x*sinx2
x*sin(x)²
x*sin(x) to the power of 2
xsin(x)^2
xsin(x)2
xsinx2
xsinx^2
Similar expressions
x*sin(x^2)/3
x*sinx^2
Limit of the function
/
x*sin(x)^2
Limit of the function x*sin(x)^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 \ lim \x*sin (x)/ x->oo
lim
x
→
∞
(
x
sin
2
(
x
)
)
\lim_{x \to \infty}\left(x \sin^{2}{\left(x \right)}\right)
x
→
∞
lim
(
x
sin
2
(
x
)
)
Limit(x*sin(x)^2, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20
20
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
sin
2
(
x
)
)
=
∞
sign
(
⟨
0
,
1
⟩
)
\lim_{x \to \infty}\left(x \sin^{2}{\left(x \right)}\right) = \infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}
x
→
∞
lim
(
x
sin
2
(
x
)
)
=
∞
sign
(
⟨
0
,
1
⟩
)
lim
x
→
0
−
(
x
sin
2
(
x
)
)
=
0
\lim_{x \to 0^-}\left(x \sin^{2}{\left(x \right)}\right) = 0
x
→
0
−
lim
(
x
sin
2
(
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
sin
2
(
x
)
)
=
0
\lim_{x \to 0^+}\left(x \sin^{2}{\left(x \right)}\right) = 0
x
→
0
+
lim
(
x
sin
2
(
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
sin
2
(
x
)
)
=
sin
2
(
1
)
\lim_{x \to 1^-}\left(x \sin^{2}{\left(x \right)}\right) = \sin^{2}{\left(1 \right)}
x
→
1
−
lim
(
x
sin
2
(
x
)
)
=
sin
2
(
1
)
More at x→1 from the left
lim
x
→
1
+
(
x
sin
2
(
x
)
)
=
sin
2
(
1
)
\lim_{x \to 1^+}\left(x \sin^{2}{\left(x \right)}\right) = \sin^{2}{\left(1 \right)}
x
→
1
+
lim
(
x
sin
2
(
x
)
)
=
sin
2
(
1
)
More at x→1 from the right
lim
x
→
−
∞
(
x
sin
2
(
x
)
)
=
−
∞
sign
(
⟨
0
,
1
⟩
)
\lim_{x \to -\infty}\left(x \sin^{2}{\left(x \right)}\right) = - \infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}
x
→
−
∞
lim
(
x
sin
2
(
x
)
)
=
−
∞
sign
(
⟨
0
,
1
⟩
)
More at x→-oo
Rapid solution
[src]
oo*sign(<0, 1>)
∞
sign
(
⟨
0
,
1
⟩
)
\infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}
∞
sign
(
⟨
0
,
1
⟩
)
Expand and simplify
The graph