$$\lim_{x \to \infty}\left(x \sin^{2}{\left(x \right)}\right) = \infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}$$
$$\lim_{x \to 0^-}\left(x \sin^{2}{\left(x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x \sin^{2}{\left(x \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(x \sin^{2}{\left(x \right)}\right) = \sin^{2}{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x \sin^{2}{\left(x \right)}\right) = \sin^{2}{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x \sin^{2}{\left(x \right)}\right) = - \infty \operatorname{sign}{\left(\left\langle 0, 1\right\rangle \right)}$$
More at x→-oo