Mister Exam

Other calculators:


tan(8*x)/sin(5*x)

Limit of the function tan(8*x)/sin(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(8*x)\
 lim |--------|
x->0+\sin(5*x)/
limx0+(tan(8x)sin(5x))\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)
Limit(tan(8*x)/sin(5*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+tan(8x)=0\lim_{x \to 0^+} \tan{\left(8 x \right)} = 0
and limit for the denominator is
limx0+sin(5x)=0\lim_{x \to 0^+} \sin{\left(5 x \right)} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(tan(8x)sin(5x))\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)
=
limx0+(ddxtan(8x)ddxsin(5x))\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(8 x \right)}}{\frac{d}{d x} \sin{\left(5 x \right)}}\right)
=
limx0+(8tan2(8x)+85cos(5x))\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)} + 8}{5 \cos{\left(5 x \right)}}\right)
=
limx0+(8tan2(8x)5+85)\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)}}{5} + \frac{8}{5}\right)
=
limx0+(8tan2(8x)5+85)\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)}}{5} + \frac{8}{5}\right)
=
85\frac{8}{5}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-200200
One‐sided limits [src]
     /tan(8*x)\
 lim |--------|
x->0+\sin(5*x)/
limx0+(tan(8x)sin(5x))\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)
8/5
85\frac{8}{5}
= 1.6
     /tan(8*x)\
 lim |--------|
x->0-\sin(5*x)/
limx0(tan(8x)sin(5x))\lim_{x \to 0^-}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)
8/5
85\frac{8}{5}
= 1.6
= 1.6
Rapid solution [src]
8/5
85\frac{8}{5}
Other limits x→0, -oo, +oo, 1
limx0(tan(8x)sin(5x))=85\lim_{x \to 0^-}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{8}{5}
More at x→0 from the left
limx0+(tan(8x)sin(5x))=85\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{8}{5}
limx(tan(8x)sin(5x))\lim_{x \to \infty}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)
More at x→oo
limx1(tan(8x)sin(5x))=tan(8)sin(5)\lim_{x \to 1^-}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{\tan{\left(8 \right)}}{\sin{\left(5 \right)}}
More at x→1 from the left
limx1+(tan(8x)sin(5x))=tan(8)sin(5)\lim_{x \to 1^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{\tan{\left(8 \right)}}{\sin{\left(5 \right)}}
More at x→1 from the right
limx(tan(8x)sin(5x))\lim_{x \to -\infty}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)
More at x→-oo
Numerical answer [src]
1.6
1.6
The graph
Limit of the function tan(8*x)/sin(5*x)