Mister Exam

Other calculators:


tan(8*x)/sin(5*x)

Limit of the function tan(8*x)/sin(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(8*x)\
 lim |--------|
x->0+\sin(5*x)/
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)$$
Limit(tan(8*x)/sin(5*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \tan{\left(8 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \sin{\left(5 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(8 x \right)}}{\frac{d}{d x} \sin{\left(5 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)} + 8}{5 \cos{\left(5 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)}}{5} + \frac{8}{5}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)}}{5} + \frac{8}{5}\right)$$
=
$$\frac{8}{5}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /tan(8*x)\
 lim |--------|
x->0+\sin(5*x)/
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)$$
8/5
$$\frac{8}{5}$$
= 1.6
     /tan(8*x)\
 lim |--------|
x->0-\sin(5*x)/
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)$$
8/5
$$\frac{8}{5}$$
= 1.6
= 1.6
Rapid solution [src]
8/5
$$\frac{8}{5}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{8}{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{8}{5}$$
$$\lim_{x \to \infty}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{\tan{\left(8 \right)}}{\sin{\left(5 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right) = \frac{\tan{\left(8 \right)}}{\sin{\left(5 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\tan{\left(8 x \right)}}{\sin{\left(5 x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
1.6
1.6
The graph
Limit of the function tan(8*x)/sin(5*x)