Mister Exam

Other calculators:


x*(-1/2)^x

Limit of the function x*(-1/2)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      x\
 lim \x*-1/2 /
x->oo         
$$\lim_{x \to \infty}\left(\left(- \frac{1}{2}\right)^{x} x\right)$$
Limit(x*(-1/2)^x, x, oo, dir='-')
The graph
Rapid solution [src]
None
None
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\left(- \frac{1}{2}\right)^{x} x\right)$$
$$\lim_{x \to 0^-}\left(\left(- \frac{1}{2}\right)^{x} x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(- \frac{1}{2}\right)^{x} x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\left(- \frac{1}{2}\right)^{x} x\right) = - \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(- \frac{1}{2}\right)^{x} x\right) = - \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\left(- \frac{1}{2}\right)^{x} x\right)$$
More at x→-oo
The graph
Limit of the function x*(-1/2)^x