$$\lim_{x \to \infty}\left(\left(- \frac{1}{2}\right)^{x} x\right)$$ $$\lim_{x \to 0^-}\left(\left(- \frac{1}{2}\right)^{x} x\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\left(- \frac{1}{2}\right)^{x} x\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\left(- \frac{1}{2}\right)^{x} x\right) = - \frac{1}{2}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\left(- \frac{1}{2}\right)^{x} x\right) = - \frac{1}{2}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\left(- \frac{1}{2}\right)^{x} x\right)$$ More at x→-oo