Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of (1+4/x)^(3*x)
Limit of (1-1/(3*x))^(6*x)
Limit of (-9+x^2)/(-27+x^3)
Graphing y =
:
x*log(x)^3
Identical expressions
x*log(x)^ three
x multiply by logarithm of (x) cubed
x multiply by logarithm of (x) to the power of three
x*log(x)3
x*logx3
x*log(x)³
x*log(x) to the power of 3
xlog(x)^3
xlog(x)3
xlogx3
xlogx^3
Limit of the function
/
x*log(x)^3
Limit of the function x*log(x)^3
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3 \ lim \x*log (x)/ x->oo
lim
x
→
∞
(
x
log
(
x
)
3
)
\lim_{x \to \infty}\left(x \log{\left(x \right)}^{3}\right)
x
→
∞
lim
(
x
lo
g
(
x
)
3
)
Limit(x*log(x)^3, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
200
-100
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
log
(
x
)
3
)
=
∞
\lim_{x \to \infty}\left(x \log{\left(x \right)}^{3}\right) = \infty
x
→
∞
lim
(
x
lo
g
(
x
)
3
)
=
∞
lim
x
→
0
−
(
x
log
(
x
)
3
)
=
0
\lim_{x \to 0^-}\left(x \log{\left(x \right)}^{3}\right) = 0
x
→
0
−
lim
(
x
lo
g
(
x
)
3
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
log
(
x
)
3
)
=
0
\lim_{x \to 0^+}\left(x \log{\left(x \right)}^{3}\right) = 0
x
→
0
+
lim
(
x
lo
g
(
x
)
3
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
log
(
x
)
3
)
=
0
\lim_{x \to 1^-}\left(x \log{\left(x \right)}^{3}\right) = 0
x
→
1
−
lim
(
x
lo
g
(
x
)
3
)
=
0
More at x→1 from the left
lim
x
→
1
+
(
x
log
(
x
)
3
)
=
0
\lim_{x \to 1^+}\left(x \log{\left(x \right)}^{3}\right) = 0
x
→
1
+
lim
(
x
lo
g
(
x
)
3
)
=
0
More at x→1 from the right
lim
x
→
−
∞
(
x
log
(
x
)
3
)
=
−
∞
\lim_{x \to -\infty}\left(x \log{\left(x \right)}^{3}\right) = -\infty
x
→
−
∞
lim
(
x
lo
g
(
x
)
3
)
=
−
∞
More at x→-oo
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
The graph