Mister Exam

Other calculators:


(1-1/(3*x))^(6*x)

Limit of the function (1-1/(3*x))^(6*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
              6*x
     /     1 \   
 lim |1 - ---|   
x->oo\    3*x/   
limx(113x)6x\lim_{x \to \infty} \left(1 - \frac{1}{3 x}\right)^{6 x}
Limit((1 - 1/(3*x))^(6*x), x, oo, dir='-')
Detail solution
Let's take the limit
limx(113x)6x\lim_{x \to \infty} \left(1 - \frac{1}{3 x}\right)^{6 x}
transform
do replacement
u=x13u = \frac{x}{- \frac{1}{3}}
then
limx(113x)6x\lim_{x \to \infty} \left(1 - \frac{1}{3 x}\right)^{6 x} =
=
limu(1+1u)2u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 2 u}
=
limu(1+1u)2u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 2 u}
=
((limu(1+1u)u))2\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-2}
The limit
limu(1+1u)u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu(1+1u)u))2=e2\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-2} = e^{-2}

The final answer:
limx(113x)6x=e2\lim_{x \to \infty} \left(1 - \frac{1}{3 x}\right)^{6 x} = e^{-2}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.00.5
Rapid solution [src]
 -2
e  
e2e^{-2}
Other limits x→0, -oo, +oo, 1
limx(113x)6x=e2\lim_{x \to \infty} \left(1 - \frac{1}{3 x}\right)^{6 x} = e^{-2}
limx0(113x)6x=1\lim_{x \to 0^-} \left(1 - \frac{1}{3 x}\right)^{6 x} = 1
More at x→0 from the left
limx0+(113x)6x=1\lim_{x \to 0^+} \left(1 - \frac{1}{3 x}\right)^{6 x} = 1
More at x→0 from the right
limx1(113x)6x=64729\lim_{x \to 1^-} \left(1 - \frac{1}{3 x}\right)^{6 x} = \frac{64}{729}
More at x→1 from the left
limx1+(113x)6x=64729\lim_{x \to 1^+} \left(1 - \frac{1}{3 x}\right)^{6 x} = \frac{64}{729}
More at x→1 from the right
limx(113x)6x=e2\lim_{x \to -\infty} \left(1 - \frac{1}{3 x}\right)^{6 x} = e^{-2}
More at x→-oo
The graph
Limit of the function (1-1/(3*x))^(6*x)