Mister Exam

Other calculators:


x*exp(x^2/2)

Limit of the function x*exp(x^2/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /    2\
      |   x |
      |   --|
      |   2 |
 lim  \x*e  /
x->-oo       
$$\lim_{x \to -\infty}\left(x e^{\frac{x^{2}}{2}}\right)$$
Limit(x*exp(x^2/2), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(x e^{\frac{x^{2}}{2}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(x e^{\frac{x^{2}}{2}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x e^{\frac{x^{2}}{2}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x e^{\frac{x^{2}}{2}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x e^{\frac{x^{2}}{2}}\right) = e^{\frac{1}{2}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x e^{\frac{x^{2}}{2}}\right) = e^{\frac{1}{2}}$$
More at x→1 from the right
The graph
Limit of the function x*exp(x^2/2)