Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x*exp(x)
Limit of sin(2*x)/sin(x)^2
Limit of ((1+2*x)/(-1+x))^x
Limit of exp(n)
Graphing y =
:
x*exp(x)
Integral of d{x}
:
x*exp(x)
Derivative of
:
x*exp(x)
Identical expressions
x*exp(x)
x multiply by exponent of (x)
xexp(x)
xexpx
Similar expressions
(1+x)*exp(x/(1+x))
x*exp(x^2/2)
Limit of the function
/
x*exp(x)
Limit of the function x*exp(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ x\ lim \x*e / x->oo
$$\lim_{x \to \infty}\left(x e^{x}\right)$$
Limit(x*exp(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x e^{x}\right) = \infty$$
$$\lim_{x \to 0^-}\left(x e^{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x e^{x}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x e^{x}\right) = e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x e^{x}\right) = e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x e^{x}\right) = 0$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph