Mister Exam

Other calculators:


sin(log(x))

Limit of the function sin(log(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sin(log(x))
x->0+           
$$\lim_{x \to 0^+} \sin{\left(\log{\left(x \right)} \right)}$$
Limit(sin(log(x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sin{\left(\log{\left(x \right)} \right)} = \left\langle -1, 1\right\rangle$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sin{\left(\log{\left(x \right)} \right)} = \left\langle -1, 1\right\rangle$$
$$\lim_{x \to \infty} \sin{\left(\log{\left(x \right)} \right)} = \left\langle -1, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \sin{\left(\log{\left(x \right)} \right)} = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sin{\left(\log{\left(x \right)} \right)} = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sin{\left(\log{\left(x \right)} \right)} = \left\langle -1, 1\right\rangle$$
More at x→-oo
Rapid solution [src]
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
One‐sided limits [src]
 lim sin(log(x))
x->0+           
$$\lim_{x \to 0^+} \sin{\left(\log{\left(x \right)} \right)}$$
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
= -1.20314332687512
 lim sin(log(x))
x->0-           
$$\lim_{x \to 0^-} \sin{\left(\log{\left(x \right)} \right)}$$
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
= (-4.4841952353385 - 4.11062269554643j)
= (-4.4841952353385 - 4.11062269554643j)
Numerical answer [src]
-1.20314332687512
-1.20314332687512
The graph
Limit of the function sin(log(x))