Mister Exam

Other calculators:


e^(3-x)*(-2+x)

Limit of the function e^(3-x)*(-2+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3 - x         \
 lim \E     *(-2 + x)/
x->oo                 
limx(e3x(x2))\lim_{x \to \infty}\left(e^{3 - x} \left(x - 2\right)\right)
Limit(E^(3 - x)*(-2 + x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limx(x2)=\lim_{x \to \infty}\left(x - 2\right) = \infty
and limit for the denominator is
limxex3=\lim_{x \to \infty} e^{x - 3} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(e3x(x2))\lim_{x \to \infty}\left(e^{3 - x} \left(x - 2\right)\right)
=
Let's transform the function under the limit a few
limx((x2)e3x)\lim_{x \to \infty}\left(\left(x - 2\right) e^{3 - x}\right)
=
limx(ddx(x2)ddxex3)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(x - 2\right)}{\frac{d}{d x} e^{x - 3}}\right)
=
limx(e3ex)\lim_{x \to \infty}\left(e^{3} e^{- x}\right)
=
limx(e3ex)\lim_{x \to \infty}\left(e^{3} e^{- x}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-50000005000000
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(e3x(x2))=0\lim_{x \to \infty}\left(e^{3 - x} \left(x - 2\right)\right) = 0
limx0(e3x(x2))=2e3\lim_{x \to 0^-}\left(e^{3 - x} \left(x - 2\right)\right) = - 2 e^{3}
More at x→0 from the left
limx0+(e3x(x2))=2e3\lim_{x \to 0^+}\left(e^{3 - x} \left(x - 2\right)\right) = - 2 e^{3}
More at x→0 from the right
limx1(e3x(x2))=e2\lim_{x \to 1^-}\left(e^{3 - x} \left(x - 2\right)\right) = - e^{2}
More at x→1 from the left
limx1+(e3x(x2))=e2\lim_{x \to 1^+}\left(e^{3 - x} \left(x - 2\right)\right) = - e^{2}
More at x→1 from the right
limx(e3x(x2))=\lim_{x \to -\infty}\left(e^{3 - x} \left(x - 2\right)\right) = -\infty
More at x→-oo
The graph
Limit of the function e^(3-x)*(-2+x)