Mister Exam

Other calculators:


x*exp(-x^2)

Limit of the function x*exp(-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2\
     |   -x |
 lim \x*e   /
x->oo        
limx(xex2)\lim_{x \to \infty}\left(x e^{- x^{2}}\right)
Limit(x*exp(-x^2), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxx=\lim_{x \to \infty} x = \infty
and limit for the denominator is
limxex2=\lim_{x \to \infty} e^{x^{2}} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(xex2)\lim_{x \to \infty}\left(x e^{- x^{2}}\right)
=
limx(ddxxddxex2)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} e^{x^{2}}}\right)
=
limx(ex22x)\lim_{x \to \infty}\left(\frac{e^{- x^{2}}}{2 x}\right)
=
limx(ex22x)\lim_{x \to \infty}\left(\frac{e^{- x^{2}}}{2 x}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10101.0-1.0
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(xex2)=0\lim_{x \to \infty}\left(x e^{- x^{2}}\right) = 0
limx0(xex2)=0\lim_{x \to 0^-}\left(x e^{- x^{2}}\right) = 0
More at x→0 from the left
limx0+(xex2)=0\lim_{x \to 0^+}\left(x e^{- x^{2}}\right) = 0
More at x→0 from the right
limx1(xex2)=e1\lim_{x \to 1^-}\left(x e^{- x^{2}}\right) = e^{-1}
More at x→1 from the left
limx1+(xex2)=e1\lim_{x \to 1^+}\left(x e^{- x^{2}}\right) = e^{-1}
More at x→1 from the right
limx(xex2)=0\lim_{x \to -\infty}\left(x e^{- x^{2}}\right) = 0
More at x→-oo
The graph
Limit of the function x*exp(-x^2)