$$\lim_{n \to \infty}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \infty$$
$$\lim_{n \to 0^-}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = 3$$
More at n→0 from the left$$\lim_{n \to 0^+}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = 3$$
More at n→0 from the right$$\lim_{n \to 1^-}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \sqrt{3} + 2$$
More at n→1 from the left$$\lim_{n \to 1^+}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \sqrt{3} + 2$$
More at n→1 from the right$$\lim_{n \to -\infty}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \infty i$$
More at n→-oo