Mister Exam

Other calculators:


3-sqrt(n)+sqrt(3)*sqrt(n)

Limit of the function 3-sqrt(n)+sqrt(3)*sqrt(n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      ___     ___   ___\
 lim \3 - \/ n  + \/ 3 *\/ n /
n->oo                         
$$\lim_{n \to \infty}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right)$$
Limit(3 - sqrt(n) + sqrt(3)*sqrt(n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \infty$$
$$\lim_{n \to 0^-}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = 3$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = 3$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \sqrt{3} + 2$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \sqrt{3} + 2$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\sqrt{3} \sqrt{n} + \left(3 - \sqrt{n}\right)\right) = \infty i$$
More at n→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function 3-sqrt(n)+sqrt(3)*sqrt(n)