Mister Exam

Other calculators:


x*e^(-x)

Limit of the function x*e^(-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   -x\
 lim \x*E  /
x->oo       
limx(exx)\lim_{x \to \infty}\left(e^{- x} x\right)
Limit(x*E^(-x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxx=\lim_{x \to \infty} x = \infty
and limit for the denominator is
limxex=\lim_{x \to \infty} e^{x} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(exx)\lim_{x \to \infty}\left(e^{- x} x\right)
=
Let's transform the function under the limit a few
limx(xex)\lim_{x \to \infty}\left(x e^{- x}\right)
=
limx(ddxxddxex)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} e^{x}}\right)
=
limxex\lim_{x \to \infty} e^{- x}
=
limxex\lim_{x \to \infty} e^{- x}
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-200000200000
Other limits x→0, -oo, +oo, 1
limx(exx)=0\lim_{x \to \infty}\left(e^{- x} x\right) = 0
limx0(exx)=0\lim_{x \to 0^-}\left(e^{- x} x\right) = 0
More at x→0 from the left
limx0+(exx)=0\lim_{x \to 0^+}\left(e^{- x} x\right) = 0
More at x→0 from the right
limx1(exx)=e1\lim_{x \to 1^-}\left(e^{- x} x\right) = e^{-1}
More at x→1 from the left
limx1+(exx)=e1\lim_{x \to 1^+}\left(e^{- x} x\right) = e^{-1}
More at x→1 from the right
limx(exx)=\lim_{x \to -\infty}\left(e^{- x} x\right) = -\infty
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function x*e^(-x)