Mister Exam

Limit of the function x*cot(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x*cot(x))
x->2+          
limx2+(xcot(x))\lim_{x \to 2^+}\left(x \cot{\left(x \right)}\right)
Limit(x*cot(x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0-3.0-2.0-1.04.00.01.02.03.0-200200
Rapid solution [src]
  2   
------
tan(2)
2tan(2)\frac{2}{\tan{\left(2 \right)}}
One‐sided limits [src]
 lim (x*cot(x))
x->2+          
limx2+(xcot(x))\lim_{x \to 2^+}\left(x \cot{\left(x \right)}\right)
  2   
------
tan(2)
2tan(2)\frac{2}{\tan{\left(2 \right)}}
= -0.915315108720572
 lim (x*cot(x))
x->2-          
limx2(xcot(x))\lim_{x \to 2^-}\left(x \cot{\left(x \right)}\right)
  2   
------
tan(2)
2tan(2)\frac{2}{\tan{\left(2 \right)}}
= -0.915315108720572
= -0.915315108720572
Other limits x→0, -oo, +oo, 1
limx2(xcot(x))=2tan(2)\lim_{x \to 2^-}\left(x \cot{\left(x \right)}\right) = \frac{2}{\tan{\left(2 \right)}}
More at x→2 from the left
limx2+(xcot(x))=2tan(2)\lim_{x \to 2^+}\left(x \cot{\left(x \right)}\right) = \frac{2}{\tan{\left(2 \right)}}
limx(xcot(x))\lim_{x \to \infty}\left(x \cot{\left(x \right)}\right)
More at x→oo
limx0(xcot(x))=1\lim_{x \to 0^-}\left(x \cot{\left(x \right)}\right) = 1
More at x→0 from the left
limx0+(xcot(x))=1\lim_{x \to 0^+}\left(x \cot{\left(x \right)}\right) = 1
More at x→0 from the right
limx1(xcot(x))=1tan(1)\lim_{x \to 1^-}\left(x \cot{\left(x \right)}\right) = \frac{1}{\tan{\left(1 \right)}}
More at x→1 from the left
limx1+(xcot(x))=1tan(1)\lim_{x \to 1^+}\left(x \cot{\left(x \right)}\right) = \frac{1}{\tan{\left(1 \right)}}
More at x→1 from the right
limx(xcot(x))\lim_{x \to -\infty}\left(x \cot{\left(x \right)}\right)
More at x→-oo
Numerical answer [src]
-0.915315108720572
-0.915315108720572
The graph
Limit of the function x*cot(x)