$$\lim_{x \to 2^-}\left(x \cot{\left(x \right)}\right) = \frac{2}{\tan{\left(2 \right)}}$$ More at x→2 from the left $$\lim_{x \to 2^+}\left(x \cot{\left(x \right)}\right) = \frac{2}{\tan{\left(2 \right)}}$$ $$\lim_{x \to \infty}\left(x \cot{\left(x \right)}\right)$$ More at x→oo $$\lim_{x \to 0^-}\left(x \cot{\left(x \right)}\right) = 1$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x \cot{\left(x \right)}\right) = 1$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(x \cot{\left(x \right)}\right) = \frac{1}{\tan{\left(1 \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x \cot{\left(x \right)}\right) = \frac{1}{\tan{\left(1 \right)}}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(x \cot{\left(x \right)}\right)$$ More at x→-oo