Mister Exam

Other calculators:


e^(-1/x)*cot(x)

Limit of the function e^(-1/x)*cot(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -1        \
     | ---       |
     |  x        |
 lim \E   *cot(x)/
x->0+             
limx0+(e1xcot(x))\lim_{x \to 0^+}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right)
Limit(E^(-1/x)*cot(x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+e1x=0\lim_{x \to 0^+} e^{- \frac{1}{x}} = 0
and limit for the denominator is
limx0+1cot(x)=0\lim_{x \to 0^+} \frac{1}{\cot{\left(x \right)}} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(e1xcot(x))\lim_{x \to 0^+}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right)
=
Let's transform the function under the limit a few
limx0+(e1xcot(x))\lim_{x \to 0^+}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right)
=
limx0+(ddxe1xddx1cot(x))\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} e^{- \frac{1}{x}}}{\frac{d}{d x} \frac{1}{\cot{\left(x \right)}}}\right)
=
limx0+(e1xcot2(x)x2(cot2(x)+1))\lim_{x \to 0^+}\left(\frac{e^{- \frac{1}{x}} \cot^{2}{\left(x \right)}}{x^{2} \left(\cot^{2}{\left(x \right)} + 1\right)}\right)
=
limx0+(e1xcot2(x)x2(cot2(x)+1))\lim_{x \to 0^+}\left(\frac{e^{- \frac{1}{x}} \cot^{2}{\left(x \right)}}{x^{2} \left(\cot^{2}{\left(x \right)} + 1\right)}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-400000200000
Rapid solution [src]
0
00
One‐sided limits [src]
     / -1        \
     | ---       |
     |  x        |
 lim \E   *cot(x)/
x->0+             
limx0+(e1xcot(x))\lim_{x \to 0^+}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right)
0
00
= -1.92831438414116e-28
     / -1        \
     | ---       |
     |  x        |
 lim \E   *cot(x)/
x->0-             
limx0(e1xcot(x))\lim_{x \to 0^-}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right)
-oo
-\infty
= 0.0258178018183778
= 0.0258178018183778
Other limits x→0, -oo, +oo, 1
limx0(e1xcot(x))=0\lim_{x \to 0^-}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(e1xcot(x))=0\lim_{x \to 0^+}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right) = 0
limx(e1xcot(x))\lim_{x \to \infty}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right)
More at x→oo
limx1(e1xcot(x))=1etan(1)\lim_{x \to 1^-}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right) = \frac{1}{e \tan{\left(1 \right)}}
More at x→1 from the left
limx1+(e1xcot(x))=1etan(1)\lim_{x \to 1^+}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right) = \frac{1}{e \tan{\left(1 \right)}}
More at x→1 from the right
limx(e1xcot(x))\lim_{x \to -\infty}\left(e^{- \frac{1}{x}} \cot{\left(x \right)}\right)
More at x→-oo
Numerical answer [src]
-1.92831438414116e-28
-1.92831438414116e-28
The graph
Limit of the function e^(-1/x)*cot(x)