Mister Exam

Other calculators:

Limit of the function (x-y)/(x+y)^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / x - y  \
 lim |--------|
x->0+|       3|
     \(x + y) /
$$\lim_{x \to 0^+}\left(\frac{x - y}{\left(x + y\right)^{3}}\right)$$
Limit((x - y)/(x + y)^3, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
-1 
---
  2
 y 
$$- \frac{1}{y^{2}}$$
One‐sided limits [src]
     / x - y  \
 lim |--------|
x->0+|       3|
     \(x + y) /
$$\lim_{x \to 0^+}\left(\frac{x - y}{\left(x + y\right)^{3}}\right)$$
-1 
---
  2
 y 
$$- \frac{1}{y^{2}}$$
     / x - y  \
 lim |--------|
x->0-|       3|
     \(x + y) /
$$\lim_{x \to 0^-}\left(\frac{x - y}{\left(x + y\right)^{3}}\right)$$
-1 
---
  2
 y 
$$- \frac{1}{y^{2}}$$
-1/y^2
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{1}{y^{2}}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{1}{y^{2}}$$
$$\lim_{x \to \infty}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{y - 1}{y^{3} + 3 y^{2} + 3 y + 1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{y - 1}{y^{3} + 3 y^{2} + 3 y + 1}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = 0$$
More at x→-oo