$$\lim_{x \to 0^-}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{1}{y^{2}}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{1}{y^{2}}$$
$$\lim_{x \to \infty}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = 0$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{y - 1}{y^{3} + 3 y^{2} + 3 y + 1}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = - \frac{y - 1}{y^{3} + 3 y^{2} + 3 y + 1}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{x - y}{\left(x + y\right)^{3}}\right) = 0$$
More at x→-oo