Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-cos(a)+cos(x))/(x-a)
Limit of x-y
Limit of tanh(n)^(1/n)
Limit of sqrt(log(x))
Expression
:
x-y
x-y
Integral of d{x}
:
x-y
Identical expressions
x-y
x minus y
Similar expressions
x+y
Limit of the function
/
x-y
Limit of the function x-y
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (x - y) x->0+
lim
x
→
0
+
(
x
−
y
)
\lim_{x \to 0^+}\left(x - y\right)
x
→
0
+
lim
(
x
−
y
)
Limit(x - y, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution
[src]
-y
−
y
- y
−
y
Expand and simplify
One‐sided limits
[src]
lim (x - y) x->0+
lim
x
→
0
+
(
x
−
y
)
\lim_{x \to 0^+}\left(x - y\right)
x
→
0
+
lim
(
x
−
y
)
-y
−
y
- y
−
y
lim (x - y) x->0-
lim
x
→
0
−
(
x
−
y
)
\lim_{x \to 0^-}\left(x - y\right)
x
→
0
−
lim
(
x
−
y
)
-y
−
y
- y
−
y
-y
Other limits x→0, -oo, +oo, 1
lim
x
→
0
−
(
x
−
y
)
=
−
y
\lim_{x \to 0^-}\left(x - y\right) = - y
x
→
0
−
lim
(
x
−
y
)
=
−
y
More at x→0 from the left
lim
x
→
0
+
(
x
−
y
)
=
−
y
\lim_{x \to 0^+}\left(x - y\right) = - y
x
→
0
+
lim
(
x
−
y
)
=
−
y
lim
x
→
∞
(
x
−
y
)
=
∞
\lim_{x \to \infty}\left(x - y\right) = \infty
x
→
∞
lim
(
x
−
y
)
=
∞
More at x→oo
lim
x
→
1
−
(
x
−
y
)
=
1
−
y
\lim_{x \to 1^-}\left(x - y\right) = 1 - y
x
→
1
−
lim
(
x
−
y
)
=
1
−
y
More at x→1 from the left
lim
x
→
1
+
(
x
−
y
)
=
1
−
y
\lim_{x \to 1^+}\left(x - y\right) = 1 - y
x
→
1
+
lim
(
x
−
y
)
=
1
−
y
More at x→1 from the right
lim
x
→
−
∞
(
x
−
y
)
=
−
∞
\lim_{x \to -\infty}\left(x - y\right) = -\infty
x
→
−
∞
lim
(
x
−
y
)
=
−
∞
More at x→-oo