Mister Exam

Other calculators:

Limit of the function x-y

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x - y)
x->0+       
$$\lim_{x \to 0^+}\left(x - y\right)$$
Limit(x - y, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
-y
$$- y$$
One‐sided limits [src]
 lim (x - y)
x->0+       
$$\lim_{x \to 0^+}\left(x - y\right)$$
-y
$$- y$$
 lim (x - y)
x->0-       
$$\lim_{x \to 0^-}\left(x - y\right)$$
-y
$$- y$$
-y
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x - y\right) = - y$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x - y\right) = - y$$
$$\lim_{x \to \infty}\left(x - y\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x - y\right) = 1 - y$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x - y\right) = 1 - y$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x - y\right) = -\infty$$
More at x→-oo