Mister Exam

Other calculators:

Limit of the function x-y

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x - y)
x->0+       
limx0+(xy)\lim_{x \to 0^+}\left(x - y\right)
Limit(x - y, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
-y
y- y
One‐sided limits [src]
 lim (x - y)
x->0+       
limx0+(xy)\lim_{x \to 0^+}\left(x - y\right)
-y
y- y
 lim (x - y)
x->0-       
limx0(xy)\lim_{x \to 0^-}\left(x - y\right)
-y
y- y
-y
Other limits x→0, -oo, +oo, 1
limx0(xy)=y\lim_{x \to 0^-}\left(x - y\right) = - y
More at x→0 from the left
limx0+(xy)=y\lim_{x \to 0^+}\left(x - y\right) = - y
limx(xy)=\lim_{x \to \infty}\left(x - y\right) = \infty
More at x→oo
limx1(xy)=1y\lim_{x \to 1^-}\left(x - y\right) = 1 - y
More at x→1 from the left
limx1+(xy)=1y\lim_{x \to 1^+}\left(x - y\right) = 1 - y
More at x→1 from the right
limx(xy)=\lim_{x \to -\infty}\left(x - y\right) = -\infty
More at x→-oo