Mister Exam

Other calculators:


sqrt(log(x))

Limit of the function sqrt(log(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       ________
 lim \/ log(x) 
x->0+          
$$\lim_{x \to 0^+} \sqrt{\log{\left(x \right)}}$$
Limit(sqrt(log(x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo*I
$$\infty i$$
One‐sided limits [src]
       ________
 lim \/ log(x) 
x->0+          
$$\lim_{x \to 0^+} \sqrt{\log{\left(x \right)}}$$
oo*I
$$\infty i$$
= (0.0 + 2.96956799395125j)
       ________
 lim \/ log(x) 
x->0-          
$$\lim_{x \to 0^-} \sqrt{\log{\left(x \right)}}$$
oo*I
$$\infty i$$
= (0.524742435538916 + 3.01531269832859j)
= (0.524742435538916 + 3.01531269832859j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sqrt{\log{\left(x \right)}} = \infty i$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{\log{\left(x \right)}} = \infty i$$
$$\lim_{x \to \infty} \sqrt{\log{\left(x \right)}} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \sqrt{\log{\left(x \right)}} = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{\log{\left(x \right)}} = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{\log{\left(x \right)}} = \infty$$
More at x→-oo
Numerical answer [src]
(0.0 + 2.96956799395125j)
(0.0 + 2.96956799395125j)
The graph
Limit of the function sqrt(log(x))