$$\lim_{n \to \infty} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = 1$$
$$\lim_{n \to 0^-} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = \infty$$
More at n→0 from the left$$\lim_{n \to 0^+} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = 0$$
More at n→0 from the right$$\lim_{n \to 1^-} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = \tanh{\left(1 \right)}$$
More at n→1 from the left$$\lim_{n \to 1^+} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = \tanh{\left(1 \right)}$$
More at n→1 from the right$$\lim_{n \to -\infty} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = 1$$
More at n→-oo