Mister Exam

Other calculators:


tanh(n)^(1/n)

Limit of the function tanh(n)^(1/n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     n _________
 lim \/ tanh(n) 
n->oo           
$$\lim_{n \to \infty} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)}$$
Limit(tanh(n)^(1/n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = 1$$
$$\lim_{n \to 0^-} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = \infty$$
More at n→0 from the left
$$\lim_{n \to 0^+} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = 0$$
More at n→0 from the right
$$\lim_{n \to 1^-} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = \tanh{\left(1 \right)}$$
More at n→1 from the left
$$\lim_{n \to 1^+} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = \tanh{\left(1 \right)}$$
More at n→1 from the right
$$\lim_{n \to -\infty} \tanh^{1 \cdot \frac{1}{n}}{\left(n \right)} = 1$$
More at n→-oo
The graph
Limit of the function tanh(n)^(1/n)