Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-4+3*x)/(2+3*x))^(2*x)
Limit of (3+x^2-x)/(-3+3*x+5*x^2)
Limit of (-1+x^2)/(-2+x+x^2)
Limit of (sqrt(5+x)-sqrt(10))/(-15+x^2-2*x)
Graphing y =
:
x-x^2
Factor polynomial
:
x-x^2
Derivative of
:
x-x^2
Identical expressions
x-x^ two
x minus x squared
x minus x to the power of two
x-x2
x-x²
x-x to the power of 2
Similar expressions
x-x^2*atan(1/x)
tan(5*x)/(x-x^2)
x+x^2
(2+x^2-3*x)/(x-x^2)
(-x-x^2)/(2+2*x^2+3*x)
Limit of the function
/
x-x^2
Limit of the function x-x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ lim \x - x / x->-oo
$$\lim_{x \to -\infty}\left(- x^{2} + x\right)$$
Limit(x - x^2, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(- x^{2} + x\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to -\infty}\left(- x^{2} + x\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{u - 1}{u^{2}}\right)$$
=
$$\frac{-1}{0} = -\infty$$
The final answer:
$$\lim_{x \to -\infty}\left(- x^{2} + x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(- x^{2} + x\right) = -\infty$$
$$\lim_{x \to \infty}\left(- x^{2} + x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{2} + x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} + x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{2} + x\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} + x\right) = 0$$
More at x→1 from the right
The graph