Mister Exam

Other calculators:


x-x^2

Limit of the function x-x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /     2\
 lim  \x - x /
x->-oo        
$$\lim_{x \to -\infty}\left(- x^{2} + x\right)$$
Limit(x - x^2, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(- x^{2} + x\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to -\infty}\left(- x^{2} + x\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{u - 1}{u^{2}}\right)$$
=
$$\frac{-1}{0} = -\infty$$

The final answer:
$$\lim_{x \to -\infty}\left(- x^{2} + x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(- x^{2} + x\right) = -\infty$$
$$\lim_{x \to \infty}\left(- x^{2} + x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{2} + x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} + x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{2} + x\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} + x\right) = 0$$
More at x→1 from the right
The graph
Limit of the function x-x^2