Mister Exam

Limit of the function x-e^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /     x\
 lim  \x - E /
x->-oo        
$$\lim_{x \to -\infty}\left(- e^{x} + x\right)$$
Limit(x - E^x, x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(- e^{x} + x\right) = -\infty$$
$$\lim_{x \to \infty}\left(- e^{x} + x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- e^{x} + x\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- e^{x} + x\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- e^{x} + x\right) = 1 - e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- e^{x} + x\right) = 1 - e$$
More at x→1 from the right
The graph
Limit of the function x-e^x