Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1-3*x^2+2*x^3)/(x^3+2*x+4*x^2)
Limit of (-4-7*x+2*x^2)/(4-13*x+3*x^2)
Limit of 5+3*n
Limit of (-12+x^2-4*x)/(48+x^2-14*x)
Identical expressions
five + three *n
5 plus 3 multiply by n
five plus three multiply by n
5+3n
Similar expressions
5-3*n
Limit of the function
/
5+3*n
Limit of the function 5+3*n
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (5 + 3*n) n->oo
$$\lim_{n \to \infty}\left(3 n + 5\right)$$
Limit(5 + 3*n, n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(3 n + 5\right)$$
Let's divide numerator and denominator by n:
$$\lim_{n \to \infty}\left(3 n + 5\right)$$ =
$$\lim_{n \to \infty}\left(\frac{3 + \frac{5}{n}}{\frac{1}{n}}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{3 + \frac{5}{n}}{\frac{1}{n}}\right) = \lim_{u \to 0^+}\left(\frac{5 u + 3}{u}\right)$$
=
$$\frac{0 \cdot 5 + 3}{0} = \infty$$
The final answer:
$$\lim_{n \to \infty}\left(3 n + 5\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(3 n + 5\right) = \infty$$
$$\lim_{n \to 0^-}\left(3 n + 5\right) = 5$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(3 n + 5\right) = 5$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(3 n + 5\right) = 8$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(3 n + 5\right) = 8$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(3 n + 5\right) = -\infty$$
More at n→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph