Mister Exam

Other calculators:


5+3*n

Limit of the function 5+3*n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (5 + 3*n)
n->oo         
$$\lim_{n \to \infty}\left(3 n + 5\right)$$
Limit(5 + 3*n, n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(3 n + 5\right)$$
Let's divide numerator and denominator by n:
$$\lim_{n \to \infty}\left(3 n + 5\right)$$ =
$$\lim_{n \to \infty}\left(\frac{3 + \frac{5}{n}}{\frac{1}{n}}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{3 + \frac{5}{n}}{\frac{1}{n}}\right) = \lim_{u \to 0^+}\left(\frac{5 u + 3}{u}\right)$$
=
$$\frac{0 \cdot 5 + 3}{0} = \infty$$

The final answer:
$$\lim_{n \to \infty}\left(3 n + 5\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(3 n + 5\right) = \infty$$
$$\lim_{n \to 0^-}\left(3 n + 5\right) = 5$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(3 n + 5\right) = 5$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(3 n + 5\right) = 8$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(3 n + 5\right) = 8$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(3 n + 5\right) = -\infty$$
More at n→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function 5+3*n