Mister Exam

Other calculators:

Limit of the function x/y^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x \
 lim |--|
y->oo| 2|
     \y /
limy(xy2)\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right)
Limit(x/y^2, y, oo, dir='-')
Detail solution
Let's take the limit
limy(xy2)\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right)
Let's divide numerator and denominator by y^2:
limy(xy2)\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right) =
limy(x1y21)\lim_{y \to \infty}\left(\frac{x \frac{1}{y^{2}}}{1}\right)
Do Replacement
u=1yu = \frac{1}{y}
then
limy(x1y21)=limu0+(u2x)\lim_{y \to \infty}\left(\frac{x \frac{1}{y^{2}}}{1}\right) = \lim_{u \to 0^+}\left(u^{2} x\right)
=
02x=00^{2} x = 0

The final answer:
limy(xy2)=0\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right) = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
0
00
Other limits y→0, -oo, +oo, 1
limy(xy2)=0\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right) = 0
limy0(xy2)=sign(x)\lim_{y \to 0^-}\left(\frac{x}{y^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}
More at y→0 from the left
limy0+(xy2)=sign(x)\lim_{y \to 0^+}\left(\frac{x}{y^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}
More at y→0 from the right
limy1(xy2)=x\lim_{y \to 1^-}\left(\frac{x}{y^{2}}\right) = x
More at y→1 from the left
limy1+(xy2)=x\lim_{y \to 1^+}\left(\frac{x}{y^{2}}\right) = x
More at y→1 from the right
limy(xy2)=0\lim_{y \to -\infty}\left(\frac{x}{y^{2}}\right) = 0
More at y→-oo