Mister Exam

Other calculators:

Limit of the function x/y^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x \
 lim |--|
y->oo| 2|
     \y /
$$\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right)$$
Limit(x/y^2, y, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right)$$
Let's divide numerator and denominator by y^2:
$$\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right)$$ =
$$\lim_{y \to \infty}\left(\frac{x \frac{1}{y^{2}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{y}$$
then
$$\lim_{y \to \infty}\left(\frac{x \frac{1}{y^{2}}}{1}\right) = \lim_{u \to 0^+}\left(u^{2} x\right)$$
=
$$0^{2} x = 0$$

The final answer:
$$\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
0
$$0$$
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right) = 0$$
$$\lim_{y \to 0^-}\left(\frac{x}{y^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}$$
More at y→0 from the left
$$\lim_{y \to 0^+}\left(\frac{x}{y^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}$$
More at y→0 from the right
$$\lim_{y \to 1^-}\left(\frac{x}{y^{2}}\right) = x$$
More at y→1 from the left
$$\lim_{y \to 1^+}\left(\frac{x}{y^{2}}\right) = x$$
More at y→1 from the right
$$\lim_{y \to -\infty}\left(\frac{x}{y^{2}}\right) = 0$$
More at y→-oo