$$\lim_{y \to \infty}\left(\frac{x}{y^{2}}\right) = 0$$ $$\lim_{y \to 0^-}\left(\frac{x}{y^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}$$ More at y→0 from the left $$\lim_{y \to 0^+}\left(\frac{x}{y^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}$$ More at y→0 from the right $$\lim_{y \to 1^-}\left(\frac{x}{y^{2}}\right) = x$$ More at y→1 from the left $$\lim_{y \to 1^+}\left(\frac{x}{y^{2}}\right) = x$$ More at y→1 from the right $$\lim_{y \to -\infty}\left(\frac{x}{y^{2}}\right) = 0$$ More at y→-oo