$$\lim_{x \to \infty}\left(\frac{x}{y}\right) = \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$ $$\lim_{x \to 0^-}\left(\frac{x}{y}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{x}{y}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{x}{y}\right) = \frac{1}{y}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{x}{y}\right) = \frac{1}{y}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{x}{y}\right) = - \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$ More at x→-oo