Mister Exam

Autres calculateurs:

Limite d'une fonction x/y

lorsque
v

Pour les points finis:

Graphique:

de à

Fonction définie par morceaux:

Solution

You have entered [src]
     /x\
 lim |-|
x->oo\y/
$$\lim_{x \to \infty}\left(\frac{x}{y}\right)$$
Limit(x/y, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
       /1\
oo*sign|-|
       \y/
$$\infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{y}\right) = \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
$$\lim_{x \to 0^-}\left(\frac{x}{y}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{y}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{y}\right) = \frac{1}{y}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{y}\right) = \frac{1}{y}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{y}\right) = - \infty \operatorname{sign}{\left(\frac{1}{y} \right)}$$
More at x→-oo