Mister Exam

Other calculators:


(9-x+2*x^2)/(5-x)

Limit of the function (9-x+2*x^2)/(5-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /           2\
     |9 - x + 2*x |
 lim |------------|
x->oo\   5 - x    /
$$\lim_{x \to \infty}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right)$$
Limit((9 - x + 2*x^2)/(5 - x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{2 - \frac{1}{x} + \frac{9}{x^{2}}}{- \frac{1}{x} + \frac{5}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{2 - \frac{1}{x} + \frac{9}{x^{2}}}{- \frac{1}{x} + \frac{5}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{9 u^{2} - u + 2}{5 u^{2} - u}\right)$$
=
$$\frac{- 0 + 9 \cdot 0^{2} + 2}{- 0 + 5 \cdot 0^{2}} = -\infty$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right) = -\infty$$
Lopital's rule
We have indeterminateness of type
oo/-oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(2 x^{2} - x + 9\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(5 - x\right) = -\infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \infty}\left(\frac{2 x^{2} - x + 9}{5 - x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(2 x^{2} - x + 9\right)}{\frac{d}{d x} \left(5 - x\right)}\right)$$
=
$$\lim_{x \to \infty}\left(1 - 4 x\right)$$
=
$$\lim_{x \to \infty}\left(1 - 4 x\right)$$
=
$$-\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right) = -\infty$$
$$\lim_{x \to 0^-}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right) = \frac{9}{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right) = \frac{9}{5}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right) = \frac{5}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right) = \frac{5}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2 x^{2} + \left(9 - x\right)}{5 - x}\right) = \infty$$
More at x→-oo
Rapid solution [src]
-oo
$$-\infty$$
The graph
Limit of the function (9-x+2*x^2)/(5-x)