Mister Exam

Other calculators:


x/sqrt(1+x)

Limit of the function x/sqrt(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    x    \
 lim |---------|
x->0+|  _______|
     \\/ 1 + x /
limx0+(xx+1)\lim_{x \to 0^+}\left(\frac{x}{\sqrt{x + 1}}\right)
Limit(x/sqrt(1 + x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
0
00
One‐sided limits [src]
     /    x    \
 lim |---------|
x->0+|  _______|
     \\/ 1 + x /
limx0+(xx+1)\lim_{x \to 0^+}\left(\frac{x}{\sqrt{x + 1}}\right)
0
00
= 1.55921026308246e-29
     /    x    \
 lim |---------|
x->0-|  _______|
     \\/ 1 + x /
limx0(xx+1)\lim_{x \to 0^-}\left(\frac{x}{\sqrt{x + 1}}\right)
0
00
= -1.44283737693697e-33
= -1.44283737693697e-33
Other limits x→0, -oo, +oo, 1
limx0(xx+1)=0\lim_{x \to 0^-}\left(\frac{x}{\sqrt{x + 1}}\right) = 0
More at x→0 from the left
limx0+(xx+1)=0\lim_{x \to 0^+}\left(\frac{x}{\sqrt{x + 1}}\right) = 0
limx(xx+1)=\lim_{x \to \infty}\left(\frac{x}{\sqrt{x + 1}}\right) = \infty
More at x→oo
limx1(xx+1)=22\lim_{x \to 1^-}\left(\frac{x}{\sqrt{x + 1}}\right) = \frac{\sqrt{2}}{2}
More at x→1 from the left
limx1+(xx+1)=22\lim_{x \to 1^+}\left(\frac{x}{\sqrt{x + 1}}\right) = \frac{\sqrt{2}}{2}
More at x→1 from the right
limx(xx+1)=i\lim_{x \to -\infty}\left(\frac{x}{\sqrt{x + 1}}\right) = \infty i
More at x→-oo
Numerical answer [src]
1.55921026308246e-29
1.55921026308246e-29
The graph
Limit of the function x/sqrt(1+x)