$$\lim_{x \to 1^-}\left(\frac{x}{x + 1}\right) = \frac{1}{2}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{x}{x + 1}\right) = \frac{1}{2}$$ $$\lim_{x \to \infty}\left(\frac{x}{x + 1}\right) = 1$$ More at x→oo $$\lim_{x \to 0^-}\left(\frac{x}{x + 1}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{x}{x + 1}\right) = 0$$ More at x→0 from the right $$\lim_{x \to -\infty}\left(\frac{x}{x + 1}\right) = 1$$ More at x→-oo