Mister Exam

Other calculators:


x/(1+x)

Limit of the function x/(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x  \
 lim |-----|
x->1+\1 + x/
$$\lim_{x \to 1^+}\left(\frac{x}{x + 1}\right)$$
Limit(x/(1 + x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{x}{x + 1}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{x + 1}\right) = \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{x}{x + 1}\right) = 1$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{x + 1}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{x + 1}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{x + 1}\right) = 1$$
More at x→-oo
Rapid solution [src]
1/2
$$\frac{1}{2}$$
One‐sided limits [src]
     /  x  \
 lim |-----|
x->1+\1 + x/
$$\lim_{x \to 1^+}\left(\frac{x}{x + 1}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
     /  x  \
 lim |-----|
x->1-\1 + x/
$$\lim_{x \to 1^-}\left(\frac{x}{x + 1}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
= 0.5
Numerical answer [src]
0.5
0.5
The graph
Limit of the function x/(1+x)