Mister Exam

Limit of the function x/4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x\
 lim |-|
x->2+\4/
limx2+(x4)\lim_{x \to 2^+}\left(\frac{x}{4}\right)
Limit(x/4, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0-3.0-2.0-1.04.00.01.02.03.02-2
Other limits x→0, -oo, +oo, 1
limx2(x4)=12\lim_{x \to 2^-}\left(\frac{x}{4}\right) = \frac{1}{2}
More at x→2 from the left
limx2+(x4)=12\lim_{x \to 2^+}\left(\frac{x}{4}\right) = \frac{1}{2}
limx(x4)=\lim_{x \to \infty}\left(\frac{x}{4}\right) = \infty
More at x→oo
limx0(x4)=0\lim_{x \to 0^-}\left(\frac{x}{4}\right) = 0
More at x→0 from the left
limx0+(x4)=0\lim_{x \to 0^+}\left(\frac{x}{4}\right) = 0
More at x→0 from the right
limx1(x4)=14\lim_{x \to 1^-}\left(\frac{x}{4}\right) = \frac{1}{4}
More at x→1 from the left
limx1+(x4)=14\lim_{x \to 1^+}\left(\frac{x}{4}\right) = \frac{1}{4}
More at x→1 from the right
limx(x4)=\lim_{x \to -\infty}\left(\frac{x}{4}\right) = -\infty
More at x→-oo
Rapid solution [src]
1/2
12\frac{1}{2}
One‐sided limits [src]
     /x\
 lim |-|
x->2+\4/
limx2+(x4)\lim_{x \to 2^+}\left(\frac{x}{4}\right)
1/2
12\frac{1}{2}
= 0.5
     /x\
 lim |-|
x->2-\4/
limx2(x4)\lim_{x \to 2^-}\left(\frac{x}{4}\right)
1/2
12\frac{1}{2}
= 0.5
= 0.5
Numerical answer [src]
0.5
0.5
The graph
Limit of the function x/4