Mister Exam

Other calculators:


sin(12*x)/(4*x)

Limit of the function sin(12*x)/(4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(12*x)\
 lim |---------|
x->0+\   4*x   /
limx0+(sin(12x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right)
Limit(sin(12*x)/((4*x)), x, 0)
Detail solution
Let's take the limit
limx0+(sin(12x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right)
Do replacement
u=12xu = 12 x
then
limx0+(sin(12x)4x)=limu0+(3sin(u)u)\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = \lim_{u \to 0^+}\left(\frac{3 \sin{\left(u \right)}}{u}\right)
=
3limu0+(sin(u)u)3 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
is first remarkable limit, is equal to 1.

The final answer:
limx0+(sin(12x)4x)=3\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = 3
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+sin(12x)=0\lim_{x \to 0^+} \sin{\left(12 x \right)} = 0
and limit for the denominator is
limx0+(4x)=0\lim_{x \to 0^+}\left(4 x\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(sin(12x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right)
=
Let's transform the function under the limit a few
limx0+(sin(12x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right)
=
limx0+(ddxsin(12x)ddx4x)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(12 x \right)}}{\frac{d}{d x} 4 x}\right)
=
limx0+(3cos(12x))\lim_{x \to 0^+}\left(3 \cos{\left(12 x \right)}\right)
=
limx0+3\lim_{x \to 0^+} 3
=
limx0+3\lim_{x \to 0^+} 3
=
33
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10105-5
One‐sided limits [src]
     /sin(12*x)\
 lim |---------|
x->0+\   4*x   /
limx0+(sin(12x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right)
3
33
= 3.0
     /sin(12*x)\
 lim |---------|
x->0-\   4*x   /
limx0(sin(12x)4x)\lim_{x \to 0^-}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right)
3
33
= 3.0
= 3.0
Rapid solution [src]
3
33
Other limits x→0, -oo, +oo, 1
limx0(sin(12x)4x)=3\lim_{x \to 0^-}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = 3
More at x→0 from the left
limx0+(sin(12x)4x)=3\lim_{x \to 0^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = 3
limx(sin(12x)4x)=0\lim_{x \to \infty}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = 0
More at x→oo
limx1(sin(12x)4x)=sin(12)4\lim_{x \to 1^-}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = \frac{\sin{\left(12 \right)}}{4}
More at x→1 from the left
limx1+(sin(12x)4x)=sin(12)4\lim_{x \to 1^+}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = \frac{\sin{\left(12 \right)}}{4}
More at x→1 from the right
limx(sin(12x)4x)=0\lim_{x \to -\infty}\left(\frac{\sin{\left(12 x \right)}}{4 x}\right) = 0
More at x→-oo
Numerical answer [src]
3.0
3.0
The graph
Limit of the function sin(12*x)/(4*x)