Mister Exam

Integral of x/4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1     
  /     
 |      
 |  x   
 |  - dx
 |  4   
 |      
/       
0       
01x4dx\int\limits_{0}^{1} \frac{x}{4}\, dx
Integral(x/4, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    x4dx=xdx4\int \frac{x}{4}\, dx = \frac{\int x\, dx}{4}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: x28\frac{x^{2}}{8}

  2. Add the constant of integration:

    x28+constant\frac{x^{2}}{8}+ \mathrm{constant}


The answer is:

x28+constant\frac{x^{2}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /             
 |             2
 | x          x 
 | - dx = C + --
 | 4          8 
 |              
/               
x4dx=C+x28\int \frac{x}{4}\, dx = C + \frac{x^{2}}{8}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.000.50
The answer [src]
1/8
18\frac{1}{8}
=
=
1/8
18\frac{1}{8}
1/8
Numerical answer [src]
0.125
0.125
The graph
Integral of x/4 dx

    Use the examples entering the upper and lower limits of integration.