Mister Exam

Other calculators:


(1-sin(2*x))/(pi-4*x)

Limit of the function (1-sin(2*x))/(pi-4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /1 - sin(2*x)\
 lim  |------------|
   pi \  pi - 4*x  /
x->--+              
   4                
limxπ4+(1sin(2x)π4x)\lim_{x \to \frac{\pi}{4}^+}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right)
Limit((1 - sin(2*x))/(pi - 4*x), x, pi/4)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limxπ4+(1sin(2x))=0\lim_{x \to \frac{\pi}{4}^+}\left(1 - \sin{\left(2 x \right)}\right) = 0
and limit for the denominator is
limxπ4+(π4x)=0\lim_{x \to \frac{\pi}{4}^+}\left(\pi - 4 x\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limxπ4+(1sin(2x)π4x)\lim_{x \to \frac{\pi}{4}^+}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right)
=
limxπ4+(ddx(1sin(2x))ddx(π4x))\lim_{x \to \frac{\pi}{4}^+}\left(\frac{\frac{d}{d x} \left(1 - \sin{\left(2 x \right)}\right)}{\frac{d}{d x} \left(\pi - 4 x\right)}\right)
=
limxπ4+(cos(2x)2)\lim_{x \to \frac{\pi}{4}^+}\left(\frac{\cos{\left(2 x \right)}}{2}\right)
=
limxπ4+(cos(2x)2)\lim_{x \to \frac{\pi}{4}^+}\left(\frac{\cos{\left(2 x \right)}}{2}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
-1.50-1.25-1.00-0.75-0.50-0.250.000.250.500.751.001.251.500.5-0.5
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limxπ4(1sin(2x)π4x)=0\lim_{x \to \frac{\pi}{4}^-}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = 0
More at x→pi/4 from the left
limxπ4+(1sin(2x)π4x)=0\lim_{x \to \frac{\pi}{4}^+}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = 0
limx(1sin(2x)π4x)=0\lim_{x \to \infty}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = 0
More at x→oo
limx0(1sin(2x)π4x)=1π\lim_{x \to 0^-}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = \frac{1}{\pi}
More at x→0 from the left
limx0+(1sin(2x)π4x)=1π\lim_{x \to 0^+}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = \frac{1}{\pi}
More at x→0 from the right
limx1(1sin(2x)π4x)=1+sin(2)4+π\lim_{x \to 1^-}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = - \frac{-1 + \sin{\left(2 \right)}}{-4 + \pi}
More at x→1 from the left
limx1+(1sin(2x)π4x)=1+sin(2)4+π\lim_{x \to 1^+}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = - \frac{-1 + \sin{\left(2 \right)}}{-4 + \pi}
More at x→1 from the right
limx(1sin(2x)π4x)=0\lim_{x \to -\infty}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right) = 0
More at x→-oo
One‐sided limits [src]
      /1 - sin(2*x)\
 lim  |------------|
   pi \  pi - 4*x  /
x->--+              
   4                
limxπ4+(1sin(2x)π4x)\lim_{x \to \frac{\pi}{4}^+}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right)
0
00
= 1.53080849893419e-17
      /1 - sin(2*x)\
 lim  |------------|
   pi \  pi - 4*x  /
x->---              
   4                
limxπ4(1sin(2x)π4x)\lim_{x \to \frac{\pi}{4}^-}\left(\frac{1 - \sin{\left(2 x \right)}}{\pi - 4 x}\right)
0
00
= 1.53080849893419e-17
= 1.53080849893419e-17
Numerical answer [src]
1.53080849893419e-17
1.53080849893419e-17
The graph
Limit of the function (1-sin(2*x))/(pi-4*x)