Mister Exam

Other calculators:


(1-sin(x))^(1/sin(x))

Limit of the function (1-sin(x))^(1/sin(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
                   1   
                 ------
                 sin(x)
 lim (1 - sin(x))      
x->0+                  
limx0+(1sin(x))1sin(x)\lim_{x \to 0^+} \left(1 - \sin{\left(x \right)}\right)^{\frac{1}{\sin{\left(x \right)}}}
Limit((1 - sin(x))^(1/sin(x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.01.0
One‐sided limits [src]
                   1   
                 ------
                 sin(x)
 lim (1 - sin(x))      
x->0+                  
limx0+(1sin(x))1sin(x)\lim_{x \to 0^+} \left(1 - \sin{\left(x \right)}\right)^{\frac{1}{\sin{\left(x \right)}}}
 -1
e  
e1e^{-1}
= 0.367879441171442
                   1   
                 ------
                 sin(x)
 lim (1 - sin(x))      
x->0-                  
limx0(1sin(x))1sin(x)\lim_{x \to 0^-} \left(1 - \sin{\left(x \right)}\right)^{\frac{1}{\sin{\left(x \right)}}}
 -1
e  
e1e^{-1}
= 0.367879441171442
= 0.367879441171442
Rapid solution [src]
 -1
e  
e1e^{-1}
Numerical answer [src]
0.367879441171442
0.367879441171442
The graph
Limit of the function (1-sin(x))^(1/sin(x))