Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (3+x^2-4*x)/(-9+x^2)
Limit of (-8+x^2+2*x)/(8-x^3)
Limit of (1+5*x)*(-1+5*x)
Limit of (5-3*x^2-2*x)/(3+x+x^2)
Factor polynomial
:
2+x^2
Integral of d{x}
:
2+x^2
Identical expressions
two +x^ two
2 plus x squared
two plus x to the power of two
2+x2
2+x²
2+x to the power of 2
Similar expressions
1-e^(-x)*(2+x^2-2*x)
(4+x^2-5*x)/(12+x^2-7*x)
2-x^2
(-49+x^2)/(42+x^2-13*x)
Limit of the function
/
2+x^2
Limit of the function 2+x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ lim \2 + x / x->2+
lim
x
→
2
+
(
x
2
+
2
)
\lim_{x \to 2^+}\left(x^{2} + 2\right)
x
→
2
+
lim
(
x
2
+
2
)
Limit(2 + x^2, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0
-3.0
-2.0
-1.0
4.0
0.0
1.0
2.0
3.0
0
20
Plot the graph
One‐sided limits
[src]
/ 2\ lim \2 + x / x->2+
lim
x
→
2
+
(
x
2
+
2
)
\lim_{x \to 2^+}\left(x^{2} + 2\right)
x
→
2
+
lim
(
x
2
+
2
)
6
6
6
6
= 6.0
/ 2\ lim \2 + x / x->2-
lim
x
→
2
−
(
x
2
+
2
)
\lim_{x \to 2^-}\left(x^{2} + 2\right)
x
→
2
−
lim
(
x
2
+
2
)
6
6
6
6
= 6.0
= 6.0
Other limits x→0, -oo, +oo, 1
lim
x
→
2
−
(
x
2
+
2
)
=
6
\lim_{x \to 2^-}\left(x^{2} + 2\right) = 6
x
→
2
−
lim
(
x
2
+
2
)
=
6
More at x→2 from the left
lim
x
→
2
+
(
x
2
+
2
)
=
6
\lim_{x \to 2^+}\left(x^{2} + 2\right) = 6
x
→
2
+
lim
(
x
2
+
2
)
=
6
lim
x
→
∞
(
x
2
+
2
)
=
∞
\lim_{x \to \infty}\left(x^{2} + 2\right) = \infty
x
→
∞
lim
(
x
2
+
2
)
=
∞
More at x→oo
lim
x
→
0
−
(
x
2
+
2
)
=
2
\lim_{x \to 0^-}\left(x^{2} + 2\right) = 2
x
→
0
−
lim
(
x
2
+
2
)
=
2
More at x→0 from the left
lim
x
→
0
+
(
x
2
+
2
)
=
2
\lim_{x \to 0^+}\left(x^{2} + 2\right) = 2
x
→
0
+
lim
(
x
2
+
2
)
=
2
More at x→0 from the right
lim
x
→
1
−
(
x
2
+
2
)
=
3
\lim_{x \to 1^-}\left(x^{2} + 2\right) = 3
x
→
1
−
lim
(
x
2
+
2
)
=
3
More at x→1 from the left
lim
x
→
1
+
(
x
2
+
2
)
=
3
\lim_{x \to 1^+}\left(x^{2} + 2\right) = 3
x
→
1
+
lim
(
x
2
+
2
)
=
3
More at x→1 from the right
lim
x
→
−
∞
(
x
2
+
2
)
=
∞
\lim_{x \to -\infty}\left(x^{2} + 2\right) = \infty
x
→
−
∞
lim
(
x
2
+
2
)
=
∞
More at x→-oo
Rapid solution
[src]
6
6
6
6
Expand and simplify
Numerical answer
[src]
6.0
6.0
The graph