Mister Exam

Other calculators:


(1+5*x)*(-1+5*x)

Limit of the function (1+5*x)*(-1+5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim ((1 + 5*x)*(-1 + 5*x))
x->1+                      
$$\lim_{x \to 1^+}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right)$$
Limit((1 + 5*x)*(-1 + 5*x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right) = 24$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right) = 24$$
$$\lim_{x \to \infty}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right) = -1$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right) = \infty$$
More at x→-oo
Rapid solution [src]
24
$$24$$
One‐sided limits [src]
 lim ((1 + 5*x)*(-1 + 5*x))
x->1+                      
$$\lim_{x \to 1^+}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right)$$
24
$$24$$
= 24.0
 lim ((1 + 5*x)*(-1 + 5*x))
x->1-                      
$$\lim_{x \to 1^-}\left(\left(5 x - 1\right) \left(5 x + 1\right)\right)$$
24
$$24$$
= 24.0
= 24.0
Numerical answer [src]
24.0
24.0
The graph
Limit of the function (1+5*x)*(-1+5*x)