/ ___ 2\
|-1 + 3*\/ x + 8*x |
lim |-------------------|
x->0+\ x + sin(5*x) /
$$\lim_{x \to 0^+}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right)$$
$$-\infty$$
/ ___ 2\
|-1 + 3*\/ x + 8*x |
lim |-------------------|
x->0-\ x + sin(5*x) /
$$\lim_{x \to 0^-}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right)$$
$$\infty$$
= (25.1616681482 - 6.14503860206197j)
= (25.1616681482 - 6.14503860206197j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = -\infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = -\infty$$
False
More at x→oo$$\lim_{x \to 1^-}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = \frac{10}{\sin{\left(5 \right)} + 1}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = \frac{10}{\sin{\left(5 \right)} + 1}$$
More at x→1 from the rightFalse
More at x→-oo