Mister Exam

Other calculators:


(-1+3*sqrt(x)+8*x^2)/(x+sin(5*x))

Limit of the function (-1+3*sqrt(x)+8*x^2)/(x+sin(5*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /         ___      2\
     |-1 + 3*\/ x  + 8*x |
 lim |-------------------|
x->0+\    x + sin(5*x)   /
$$\lim_{x \to 0^+}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right)$$
Limit((-1 + 3*sqrt(x) + 8*x^2)/(x + sin(5*x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
     /         ___      2\
     |-1 + 3*\/ x  + 8*x |
 lim |-------------------|
x->0+\    x + sin(5*x)   /
$$\lim_{x \to 0^+}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right)$$
-oo
$$-\infty$$
= -19.016629546138
     /         ___      2\
     |-1 + 3*\/ x  + 8*x |
 lim |-------------------|
x->0-\    x + sin(5*x)   /
$$\lim_{x \to 0^-}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right)$$
oo
$$\infty$$
= (25.1616681482 - 6.14503860206197j)
= (25.1616681482 - 6.14503860206197j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = -\infty$$
False

More at x→oo
$$\lim_{x \to 1^-}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = \frac{10}{\sin{\left(5 \right)} + 1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{8 x^{2} + \left(3 \sqrt{x} - 1\right)}{x + \sin{\left(5 x \right)}}\right) = \frac{10}{\sin{\left(5 \right)} + 1}$$
More at x→1 from the right
False

More at x→-oo
Numerical answer [src]
-19.016629546138
-19.016629546138
The graph
Limit of the function (-1+3*sqrt(x)+8*x^2)/(x+sin(5*x))