Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((1+x)/(1+2*x))^x
Limit of (9^x-8^x)/asin(3*x)
Limit of 2/(-3+x)
Limit of ((2+x)/(4+x))^cos(x)
Derivative of
:
2*x^4
Integral of d{x}
:
2*x^4
Identical expressions
two *x^ four
2 multiply by x to the power of 4
two multiply by x to the power of four
2*x4
2*x⁴
2x^4
2x4
Similar expressions
8+x^3+2*x^4/3
(2*x/(-3+2*x))^(4*x)
((4+2*x)/(5+2*x))^(4*x)
1-x^2+2*x^4
Limit of the function
/
2*x^4
Limit of the function 2*x^4
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 4\ lim \2*x / x->3+
lim
x
→
3
+
(
2
x
4
)
\lim_{x \to 3^+}\left(2 x^{4}\right)
x
→
3
+
lim
(
2
x
4
)
Limit(2*x^4, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
6
0
1
2
3
4
5
-6
-5
-4
-3
-2
-1
0
5000
Plot the graph
Rapid solution
[src]
162
162
162
162
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
3
−
(
2
x
4
)
=
162
\lim_{x \to 3^-}\left(2 x^{4}\right) = 162
x
→
3
−
lim
(
2
x
4
)
=
162
More at x→3 from the left
lim
x
→
3
+
(
2
x
4
)
=
162
\lim_{x \to 3^+}\left(2 x^{4}\right) = 162
x
→
3
+
lim
(
2
x
4
)
=
162
lim
x
→
∞
(
2
x
4
)
=
∞
\lim_{x \to \infty}\left(2 x^{4}\right) = \infty
x
→
∞
lim
(
2
x
4
)
=
∞
More at x→oo
lim
x
→
0
−
(
2
x
4
)
=
0
\lim_{x \to 0^-}\left(2 x^{4}\right) = 0
x
→
0
−
lim
(
2
x
4
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
2
x
4
)
=
0
\lim_{x \to 0^+}\left(2 x^{4}\right) = 0
x
→
0
+
lim
(
2
x
4
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
2
x
4
)
=
2
\lim_{x \to 1^-}\left(2 x^{4}\right) = 2
x
→
1
−
lim
(
2
x
4
)
=
2
More at x→1 from the left
lim
x
→
1
+
(
2
x
4
)
=
2
\lim_{x \to 1^+}\left(2 x^{4}\right) = 2
x
→
1
+
lim
(
2
x
4
)
=
2
More at x→1 from the right
lim
x
→
−
∞
(
2
x
4
)
=
∞
\lim_{x \to -\infty}\left(2 x^{4}\right) = \infty
x
→
−
∞
lim
(
2
x
4
)
=
∞
More at x→-oo
One‐sided limits
[src]
/ 4\ lim \2*x / x->3+
lim
x
→
3
+
(
2
x
4
)
\lim_{x \to 3^+}\left(2 x^{4}\right)
x
→
3
+
lim
(
2
x
4
)
162
162
162
162
= 162.0
/ 4\ lim \2*x / x->3-
lim
x
→
3
−
(
2
x
4
)
\lim_{x \to 3^-}\left(2 x^{4}\right)
x
→
3
−
lim
(
2
x
4
)
162
162
162
162
= 162.0
= 162.0
Numerical answer
[src]
162.0
162.0
The graph