Mister Exam

Other calculators:


2*x^4

Limit of the function 2*x^4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   4\
 lim \2*x /
x->3+      
limx3+(2x4)\lim_{x \to 3^+}\left(2 x^{4}\right)
Limit(2*x^4, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
6012345-6-5-4-3-2-105000
Rapid solution [src]
162
162162
Other limits x→0, -oo, +oo, 1
limx3(2x4)=162\lim_{x \to 3^-}\left(2 x^{4}\right) = 162
More at x→3 from the left
limx3+(2x4)=162\lim_{x \to 3^+}\left(2 x^{4}\right) = 162
limx(2x4)=\lim_{x \to \infty}\left(2 x^{4}\right) = \infty
More at x→oo
limx0(2x4)=0\lim_{x \to 0^-}\left(2 x^{4}\right) = 0
More at x→0 from the left
limx0+(2x4)=0\lim_{x \to 0^+}\left(2 x^{4}\right) = 0
More at x→0 from the right
limx1(2x4)=2\lim_{x \to 1^-}\left(2 x^{4}\right) = 2
More at x→1 from the left
limx1+(2x4)=2\lim_{x \to 1^+}\left(2 x^{4}\right) = 2
More at x→1 from the right
limx(2x4)=\lim_{x \to -\infty}\left(2 x^{4}\right) = \infty
More at x→-oo
One‐sided limits [src]
     /   4\
 lim \2*x /
x->3+      
limx3+(2x4)\lim_{x \to 3^+}\left(2 x^{4}\right)
162
162162
= 162.0
     /   4\
 lim \2*x /
x->3-      
limx3(2x4)\lim_{x \to 3^-}\left(2 x^{4}\right)
162
162162
= 162.0
= 162.0
Numerical answer [src]
162.0
162.0
The graph
Limit of the function 2*x^4