Mister Exam

Other calculators:


2/(-3+x)

Limit of the function 2/(-3+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  2   \
 lim |------|
x->3+\-3 + x/
limx3+(2x3)\lim_{x \to 3^+}\left(\frac{2}{x - 3}\right)
Limit(2/(-3 + x), x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
6012345-6-5-4-3-2-1-500500
Other limits x→0, -oo, +oo, 1
limx3(2x3)=\lim_{x \to 3^-}\left(\frac{2}{x - 3}\right) = \infty
More at x→3 from the left
limx3+(2x3)=\lim_{x \to 3^+}\left(\frac{2}{x - 3}\right) = \infty
limx(2x3)=0\lim_{x \to \infty}\left(\frac{2}{x - 3}\right) = 0
More at x→oo
limx0(2x3)=23\lim_{x \to 0^-}\left(\frac{2}{x - 3}\right) = - \frac{2}{3}
More at x→0 from the left
limx0+(2x3)=23\lim_{x \to 0^+}\left(\frac{2}{x - 3}\right) = - \frac{2}{3}
More at x→0 from the right
limx1(2x3)=1\lim_{x \to 1^-}\left(\frac{2}{x - 3}\right) = -1
More at x→1 from the left
limx1+(2x3)=1\lim_{x \to 1^+}\left(\frac{2}{x - 3}\right) = -1
More at x→1 from the right
limx(2x3)=0\lim_{x \to -\infty}\left(\frac{2}{x - 3}\right) = 0
More at x→-oo
Rapid solution [src]
oo
\infty
One‐sided limits [src]
     /  2   \
 lim |------|
x->3+\-3 + x/
limx3+(2x3)\lim_{x \to 3^+}\left(\frac{2}{x - 3}\right)
oo
\infty
= 302.0
     /  2   \
 lim |------|
x->3-\-3 + x/
limx3(2x3)\lim_{x \to 3^-}\left(\frac{2}{x - 3}\right)
-oo
-\infty
= -302.0
= -302.0
Numerical answer [src]
302.0
302.0
The graph
Limit of the function 2/(-3+x)