Mister Exam

Other calculators:


2*x*e^(-x^2)

Limit of the function 2*x*e^(-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /       2\
      |     -x |
 lim  \2*x*E   /
x->-oo          
limx(ex22x)\lim_{x \to -\infty}\left(e^{- x^{2}} \cdot 2 x\right)
Limit((2*x)*E^(-x^2), x, -oo)
Lopital's rule
We have indeterminateness of type
-oo/oo,

i.e. limit for the numerator is
limx(2x)=\lim_{x \to -\infty}\left(2 x\right) = -\infty
and limit for the denominator is
limxex2=\lim_{x \to -\infty} e^{x^{2}} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(ex22x)\lim_{x \to -\infty}\left(e^{- x^{2}} \cdot 2 x\right)
=
Let's transform the function under the limit a few
limx(2xex2)\lim_{x \to -\infty}\left(2 x e^{- x^{2}}\right)
=
limx(ddx2xddxex2)\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} 2 x}{\frac{d}{d x} e^{x^{2}}}\right)
=
limx(ex2x)\lim_{x \to -\infty}\left(\frac{e^{- x^{2}}}{x}\right)
=
limx(ex2x)\lim_{x \to -\infty}\left(\frac{e^{- x^{2}}}{x}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(ex22x)=0\lim_{x \to -\infty}\left(e^{- x^{2}} \cdot 2 x\right) = 0
limx(ex22x)=0\lim_{x \to \infty}\left(e^{- x^{2}} \cdot 2 x\right) = 0
More at x→oo
limx0(ex22x)=0\lim_{x \to 0^-}\left(e^{- x^{2}} \cdot 2 x\right) = 0
More at x→0 from the left
limx0+(ex22x)=0\lim_{x \to 0^+}\left(e^{- x^{2}} \cdot 2 x\right) = 0
More at x→0 from the right
limx1(ex22x)=2e\lim_{x \to 1^-}\left(e^{- x^{2}} \cdot 2 x\right) = \frac{2}{e}
More at x→1 from the left
limx1+(ex22x)=2e\lim_{x \to 1^+}\left(e^{- x^{2}} \cdot 2 x\right) = \frac{2}{e}
More at x→1 from the right
The graph
Limit of the function 2*x*e^(-x^2)