Mister Exam

Other calculators


2*x*e^(-x^2)

Integral of 2*x*e^(-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |         2   
 |       -x    
 |  2*x*e    dx
 |             
/              
0              
012xex2dx\int\limits_{0}^{1} 2 x e^{- x^{2}}\, dx
Integral(2*x/E^(x^2), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2xex2dx=2xex2dx\int 2 x e^{- x^{2}}\, dx = 2 \int x e^{- x^{2}}\, dx

    1. Let u=ex2u = e^{- x^{2}}.

      Then let du=2xex2dxdu = - 2 x e^{- x^{2}} dx and substitute du2- \frac{du}{2}:

      14du\int \frac{1}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (12)du=1du2\int \left(- \frac{1}{2}\right)\, du = - \frac{\int 1\, du}{2}

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: u2- \frac{u}{2}

      Now substitute uu back in:

      ex22- \frac{e^{- x^{2}}}{2}

    So, the result is: ex2- e^{- x^{2}}

  2. Add the constant of integration:

    ex2+constant- e^{- x^{2}}+ \mathrm{constant}


The answer is:

ex2+constant- e^{- x^{2}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |        2             2
 |      -x            -x 
 | 2*x*e    dx = C - e   
 |                       
/                        
ex2-e^ {- x^2 }
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
     -1
1 - e  
2(12e12)2\,\left({{1}\over{2}}-{{e^ {- 1 }}\over{2}}\right)
=
=
     -1
1 - e  
1e+1- \frac{1}{e} + 1
Numerical answer [src]
0.632120558828558
0.632120558828558
The graph
Integral of 2*x*e^(-x^2) dx

    Use the examples entering the upper and lower limits of integration.