Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1-4*x)^(1/x)
Limit of (-16+x^2+6*x)/(-2-5*x+3*x^2)
Limit of (1+x)^(2/3)-(-1+x)^(2/3)
Limit of 1/3+x/3
Derivative of
:
2*sqrt(x)
Integral of d{x}
:
2*sqrt(x)
2*sqrt(x)
Identical expressions
two *sqrt(x)
2 multiply by square root of (x)
two multiply by square root of (x)
2*√(x)
2sqrt(x)
2sqrtx
Similar expressions
tan(13*x)^(sqrt(2)*sqrt(x))
sqrt(2)*sqrt(x)/sin(6*x)
Limit of the function
/
2*sqrt(x)
Limit of the function 2*sqrt(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ___\ lim \2*\/ x / x->oo
$$\lim_{x \to \infty}\left(2 \sqrt{x}\right)$$
Limit(2*sqrt(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(2 \sqrt{x}\right) = \infty$$
$$\lim_{x \to 0^-}\left(2 \sqrt{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 \sqrt{x}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2 \sqrt{x}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 \sqrt{x}\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2 \sqrt{x}\right) = \infty i$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph