$$\lim_{x \to \infty}\left(2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right) = \left\langle -3, 3\right\rangle$$
$$\lim_{x \to 0^-}\left(2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right) = \sin{\left(2 \right)} + 2 \sin{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right) = \sin{\left(2 \right)} + 2 \sin{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right) = \left\langle -3, 3\right\rangle$$
More at x→-oo