Mister Exam

Other calculators:

Limit of the function (10+x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x ________
 lim \/ 10 + x 
x->0+          
$$\lim_{x \to 0^+} \left(x + 10\right)^{\frac{1}{x}}$$
Limit((10 + x)^(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     x ________
 lim \/ 10 + x 
x->0+          
$$\lim_{x \to 0^+} \left(x + 10\right)^{\frac{1}{x}}$$
oo
$$\infty$$
= -0.000862230367961205
     x ________
 lim \/ 10 + x 
x->0-          
$$\lim_{x \to 0^-} \left(x + 10\right)^{\frac{1}{x}}$$
0
$$0$$
= 1.10543492388364e-21
= 1.10543492388364e-21
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(x + 10\right)^{\frac{1}{x}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(x + 10\right)^{\frac{1}{x}} = \infty$$
$$\lim_{x \to \infty} \left(x + 10\right)^{\frac{1}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} \left(x + 10\right)^{\frac{1}{x}} = 11$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(x + 10\right)^{\frac{1}{x}} = 11$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(x + 10\right)^{\frac{1}{x}} = 1$$
More at x→-oo
Numerical answer [src]
-0.000862230367961205
-0.000862230367961205