Mister Exam

Other calculators:


(10+12*x)/x^3

Limit of the function (10+12*x)/x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /10 + 12*x\
 lim |---------|
x->0+|     3   |
     \    x    /
$$\lim_{x \to 0^+}\left(\frac{12 x + 10}{x^{3}}\right)$$
Limit((10 + 12*x)/x^3, x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{12 x + 10}{x^{3}}\right)$$
transform
$$\lim_{x \to 0^+}\left(\frac{12 x + 10}{x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{12 x + 10}{x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 \left(6 x + 5\right)}{x^{3}}\right) = $$
False

= oo

The final answer:
$$\lim_{x \to 0^+}\left(\frac{12 x + 10}{x^{3}}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /10 + 12*x\
 lim |---------|
x->0+|     3   |
     \    x    /
$$\lim_{x \to 0^+}\left(\frac{12 x + 10}{x^{3}}\right)$$
oo
$$\infty$$
= 34703122.0
     /10 + 12*x\
 lim |---------|
x->0-|     3   |
     \    x    /
$$\lim_{x \to 0^-}\left(\frac{12 x + 10}{x^{3}}\right)$$
-oo
$$-\infty$$
= -34155898.0
= -34155898.0
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{12 x + 10}{x^{3}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{12 x + 10}{x^{3}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{12 x + 10}{x^{3}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{12 x + 10}{x^{3}}\right) = 22$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{12 x + 10}{x^{3}}\right) = 22$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{12 x + 10}{x^{3}}\right) = 0$$
More at x→-oo
Numerical answer [src]
34703122.0
34703122.0
The graph
Limit of the function (10+12*x)/x^3