Mister Exam

Other calculators:


2*sin(4*x)/x

Limit of the function 2*sin(4*x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /2*sin(4*x)\
 lim |----------|
x->0+\    x     /
limx0+(2sin(4x)x)\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)
Limit(2*sin(4*x)/x, x, 0)
Detail solution
Let's take the limit
limx0+(2sin(4x)x)\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)
Do replacement
u=4xu = 4 x
then
limx0+(2sin(4x)x)=limu0+(8sin(u)u)\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = \lim_{u \to 0^+}\left(\frac{8 \sin{\left(u \right)}}{u}\right)
=
8limu0+(sin(u)u)8 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
is first remarkable limit, is equal to 1.

The final answer:
limx0+(2sin(4x)x)=8\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 8
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+(2sin(4x))=0\lim_{x \to 0^+}\left(2 \sin{\left(4 x \right)}\right) = 0
and limit for the denominator is
limx0+x=0\lim_{x \to 0^+} x = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(2sin(4x)x)\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)
=
limx0+(ddx2sin(4x)ddxx)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} 2 \sin{\left(4 x \right)}}{\frac{d}{d x} x}\right)
=
limx0+(8cos(4x))\lim_{x \to 0^+}\left(8 \cos{\left(4 x \right)}\right)
=
limx0+8\lim_{x \to 0^+} 8
=
limx0+8\lim_{x \to 0^+} 8
=
88
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-1010
Rapid solution [src]
8
88
Other limits x→0, -oo, +oo, 1
limx0(2sin(4x)x)=8\lim_{x \to 0^-}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 8
More at x→0 from the left
limx0+(2sin(4x)x)=8\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 8
limx(2sin(4x)x)=0\lim_{x \to \infty}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 0
More at x→oo
limx1(2sin(4x)x)=2sin(4)\lim_{x \to 1^-}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 2 \sin{\left(4 \right)}
More at x→1 from the left
limx1+(2sin(4x)x)=2sin(4)\lim_{x \to 1^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 2 \sin{\left(4 \right)}
More at x→1 from the right
limx(2sin(4x)x)=0\lim_{x \to -\infty}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 0
More at x→-oo
One‐sided limits [src]
     /2*sin(4*x)\
 lim |----------|
x->0+\    x     /
limx0+(2sin(4x)x)\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)
8
88
= 8
     /2*sin(4*x)\
 lim |----------|
x->0-\    x     /
limx0(2sin(4x)x)\lim_{x \to 0^-}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)
8
88
= 8
= 8
Numerical answer [src]
8.0
8.0
The graph
Limit of the function 2*sin(4*x)/x