Mister Exam

Other calculators:


2*sin(4*x)/x

Limit of the function 2*sin(4*x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /2*sin(4*x)\
 lim |----------|
x->0+\    x     /
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)$$
Limit(2*sin(4*x)/x, x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)$$
Do replacement
$$u = 4 x$$
then
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = \lim_{u \to 0^+}\left(\frac{8 \sin{\left(u \right)}}{u}\right)$$
=
$$8 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
is first remarkable limit, is equal to 1.

The final answer:
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 8$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(2 \sin{\left(4 x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} 2 \sin{\left(4 x \right)}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+}\left(8 \cos{\left(4 x \right)}\right)$$
=
$$\lim_{x \to 0^+} 8$$
=
$$\lim_{x \to 0^+} 8$$
=
$$8$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
8
$$8$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 8$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 8$$
$$\lim_{x \to \infty}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 2 \sin{\left(4 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 2 \sin{\left(4 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /2*sin(4*x)\
 lim |----------|
x->0+\    x     /
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)$$
8
$$8$$
= 8
     /2*sin(4*x)\
 lim |----------|
x->0-\    x     /
$$\lim_{x \to 0^-}\left(\frac{2 \sin{\left(4 x \right)}}{x}\right)$$
8
$$8$$
= 8
= 8
Numerical answer [src]
8.0
8.0
The graph
Limit of the function 2*sin(4*x)/x