Mister Exam

Other calculators:


(-tan(x)+sin(x))/x^3

Limit of the function (-tan(x)+sin(x))/x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-tan(x) + sin(x)\
 lim |----------------|
x->0+|        3       |
     \       x        /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right)$$
Limit((-tan(x) + sin(x))/x^3, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} - \tan{\left(x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x^{3} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(\sin{\left(x \right)} - \tan{\left(x \right)}\right)}{\frac{d}{d x} x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)} - \tan^{2}{\left(x \right)} - 1}{3 x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(\cos{\left(x \right)} - \tan^{2}{\left(x \right)} - 1\right)}{\frac{d}{d x} 3 x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{- \sin{\left(x \right)} - 2 \tan^{3}{\left(x \right)} - 2 \tan{\left(x \right)}}{6 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- \sin{\left(x \right)} - 2 \tan^{3}{\left(x \right)} - 2 \tan{\left(x \right)}\right)}{\frac{d}{d x} 6 x}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\cos{\left(x \right)}}{6} - \tan^{4}{\left(x \right)} - \frac{4 \tan^{2}{\left(x \right)}}{3} - \frac{1}{3}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\cos{\left(x \right)}}{6} - \tan^{4}{\left(x \right)} - \frac{4 \tan^{2}{\left(x \right)}}{3} - \frac{1}{3}\right)$$
=
$$- \frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
The graph
Rapid solution [src]
-1/2
$$- \frac{1}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right) = - \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right) = - \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right) = - \tan{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right) = - \tan{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right)$$
More at x→-oo
One‐sided limits [src]
     /-tan(x) + sin(x)\
 lim |----------------|
x->0+|        3       |
     \       x        /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right)$$
-1/2
$$- \frac{1}{2}$$
= -0.5
     /-tan(x) + sin(x)\
 lim |----------------|
x->0-|        3       |
     \       x        /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)} - \tan{\left(x \right)}}{x^{3}}\right)$$
-1/2
$$- \frac{1}{2}$$
= -0.5
= -0.5
Numerical answer [src]
-0.5
-0.5
The graph
Limit of the function (-tan(x)+sin(x))/x^3