Mister Exam

Other calculators:


2/(x+x^2)

Limit of the function 2/(x+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  2   \
 lim |------|
x->0+|     2|
     \x + x /
$$\lim_{x \to 0^+}\left(\frac{2}{x^{2} + x}\right)$$
Limit(2/(x + x^2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /  2   \
 lim |------|
x->0+|     2|
     \x + x /
$$\lim_{x \to 0^+}\left(\frac{2}{x^{2} + x}\right)$$
oo
$$\infty$$
= 300.013157894737
     /  2   \
 lim |------|
x->0-|     2|
     \x + x /
$$\lim_{x \to 0^-}\left(\frac{2}{x^{2} + x}\right)$$
-oo
$$-\infty$$
= -304.013333333333
= -304.013333333333
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{2}{x^{2} + x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2}{x^{2} + x}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{2}{x^{2} + x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{2}{x^{2} + x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2}{x^{2} + x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2}{x^{2} + x}\right) = 0$$
More at x→-oo
Numerical answer [src]
300.013157894737
300.013157894737
The graph
Limit of the function 2/(x+x^2)