Mister Exam

Other calculators:


12*x

Limit of the function 12*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (12*x)
x->0+      
$$\lim_{x \to 0^+}\left(12 x\right)$$
Limit(12*x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (12*x)
x->0+      
$$\lim_{x \to 0^+}\left(12 x\right)$$
0
$$0$$
= 1.02676710928343e-31
 lim (12*x)
x->0-      
$$\lim_{x \to 0^-}\left(12 x\right)$$
0
$$0$$
= -1.02676710928343e-31
= -1.02676710928343e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(12 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(12 x\right) = 0$$
$$\lim_{x \to \infty}\left(12 x\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(12 x\right) = 12$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(12 x\right) = 12$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(12 x\right) = -\infty$$
More at x→-oo
Rapid solution [src]
0
$$0$$
Numerical answer [src]
1.02676710928343e-31
1.02676710928343e-31
The graph
Limit of the function 12*x