Mister Exam

Other calculators:


cos(x)/sin(x)

Limit of the function cos(x)/sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /cos(x)\
 lim |------|
x->0+\sin(x)/
limx0+(cos(x)sin(x))\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)
Limit(cos(x)/sin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-250250
One‐sided limits [src]
     /cos(x)\
 lim |------|
x->0+\sin(x)/
limx0+(cos(x)sin(x))\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)
oo
\infty
= 150.997792488027
     /cos(x)\
 lim |------|
x->0-\sin(x)/
limx0(cos(x)sin(x))\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)
-oo
-\infty
= -150.997792488027
= -150.997792488027
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx0(cos(x)sin(x))=\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \infty
More at x→0 from the left
limx0+(cos(x)sin(x))=\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \infty
limx(cos(x)sin(x))\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)
More at x→oo
limx1(cos(x)sin(x))=cos(1)sin(1)\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \frac{\cos{\left(1 \right)}}{\sin{\left(1 \right)}}
More at x→1 from the left
limx1+(cos(x)sin(x))=cos(1)sin(1)\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \frac{\cos{\left(1 \right)}}{\sin{\left(1 \right)}}
More at x→1 from the right
limx(cos(x)sin(x))\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)
More at x→-oo
Numerical answer [src]
150.997792488027
150.997792488027
The graph
Limit of the function cos(x)/sin(x)