Mister Exam

Other calculators:


cos(x)/sin(x)

Limit of the function cos(x)/sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /cos(x)\
 lim |------|
x->0+\sin(x)/
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
Limit(cos(x)/sin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /cos(x)\
 lim |------|
x->0+\sin(x)/
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
oo
$$\infty$$
= 150.997792488027
     /cos(x)\
 lim |------|
x->0-\sin(x)/
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
-oo
$$-\infty$$
= -150.997792488027
= -150.997792488027
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \frac{\cos{\left(1 \right)}}{\sin{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) = \frac{\cos{\left(1 \right)}}{\sin{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
150.997792488027
150.997792488027
The graph
Limit of the function cos(x)/sin(x)