Mister Exam

Other calculators:


3^(1/x)

Limit of the function 3^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x ___
 lim \/ 3 
x->0+     
$$\lim_{x \to 0^+} 3^{\frac{1}{x}}$$
Limit(3^(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} 3^{\frac{1}{x}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} 3^{\frac{1}{x}} = \infty$$
$$\lim_{x \to \infty} 3^{\frac{1}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} 3^{\frac{1}{x}} = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+} 3^{\frac{1}{x}} = 3$$
More at x→1 from the right
$$\lim_{x \to -\infty} 3^{\frac{1}{x}} = 1$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     x ___
 lim \/ 3 
x->0+     
$$\lim_{x \to 0^+} 3^{\frac{1}{x}}$$
oo
$$\infty$$
= -1.01208185593281e-74
     x ___
 lim \/ 3 
x->0-     
$$\lim_{x \to 0^-} 3^{\frac{1}{x}}$$
0
$$0$$
= 1.11002713424641e-78
= 1.11002713424641e-78
Numerical answer [src]
-1.01208185593281e-74
-1.01208185593281e-74
The graph
Limit of the function 3^(1/x)